
Schema Variant
Introduction

A schema variant is an object that can hold a single piece of data of a particular type. That data
can be assigned a new value of the same or different type.

The fundamental types are:

Type Description Function to set

bool A standard C++ boolean type
with true and false values

SchemaVariantSetBool

double A double precision floating
point

SchemaVariantSetNumber

LPCWSTR A Unicode string SchemaVariantSetString

void * Any arbitrary data SchemaVariantSetPointer

Creating/Destroying
To create a schema variant you call followed by a call to set some dataSchemaVariantCreate
into it with the appropriate function. Until you have set data into the newly created schema
variant the type of the schema variant will be SystemType::Undefined. Calling schema variant
functions on undefined schema variants may fail.

When you are finished with a schema variant call to free the schemaSchemaVariantDelete
variant.

Example

void MakeVariant()
{
 SchemaVariantHandle variant = SchemaVariantCreate();
// Type is SystemType::Undefined
 SchemaVariantSetNumber(variant, 123.45f); // Type
is now SystemType::Number, value 123.45

 SchemaVariantDelete(variant); // Remember to
delete the variant when finished
}

Setting/Changing

You can set/change the value and type of a schema variant with the following calls

Function Description Resulting type

SchemaVariantSetBool Sets the schema variant to a
boolean value

SystemType::Boolean

SchemaVariantSetNumber Sets the schema variant to a
double value

SystemType::ANumber

SchemaVariantSetString Sets the schema variant to a
string value

SystemType::AString

Table of Contents

Introduction
Example

Setting/Changing
Example
Classes

Coercion

http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetBool
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetNumber
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetString
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetPointer
http://docs.qbik.com/display/WINGATESDK/SchemaVariantCreate
http://docs.qbik.com/display/WINGATESDK/SchemaVariantDelete
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetBool
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetNumber
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetString

SchemaVariantSetPointer Sets the schema variant to a
pointer

The user defined type

SchemaVariantSet Sets a schema variant from
another schema variant

Same as source schema
variant

Example

void ChangeVariant()
{
 SchemaVariantHandle variant = SchemaVariantCreate();
// Type is SystemType::Undefined
 SchemaVariantSetNumber(variant, 123.45f); // Type
is now SystemType::Number, value 123.45

 SchemaVariantSetString(variant, L"Hello World"); //
Type is now SystemType::AString
 SchemaVariantDelete(variant); // Remember to
delete the variant when finished
}

When setting the schema variable to an object pointer you specify the type of the stored object
in the function call. This can be a of your construction or one pre-defined types if theTypeHash
object you are storing matches the type.

Type Object pointed to

SystemType::Byte unsigned char

SystemType:Char char

SystemType:;DateTime Qbik private

SystemType::Int16 Signed 16 bit integer

SystemType::Int32 Signed 32 bit integer

SystemType::Int64 Signed 64 bit integer

SystemType::IP4Address Qbik private

SystemType::UInt16 Unsigned 16 bit integer

SystemType::UInt32 Unsigned 32 bit integer

SystemType::UInt64 Unsigned 64 bit integer

SystemType::Single Single precision float

SystemType::Double Double precision float

SystemType::String std::wstring

SystemType::StringA std::string

Classes

In typical situations the fundamental type Double can handle most needs. The other
fundamental types are there primarily for support of schema members registered with

 so the schema framework knows how to access theSchemaClassRegisterMember
member within the offset of the object.

http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetPointer
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSet
http://docs.qbik.com/display/WINGATESDK/SchemaClassRegisterMember

Sometimes the schema framework may need to call functions for a schema variant in order to
perform operations like casts. This may require the schema framework to know what class the
schema variant belongs to. If you will need to perform class based operations on your schema
variants then you should set a schema class for the schema variant by calling SchemaVariantS
etSchema

Coercion

Coercion of schema variants is the act of forcing a schema variant to another type. The schema
variant set functions (etc) perform a coercion to the requested typeSchemaVariantSetBool
before setting the value. The rules for coercion are as follows.

If the requested type is the same as the schema variant type then no change to the
schema variant occurs
If the requested type is different to the schema variant type and the requested type is
one of the standard types (Undefined, ANumber, AString or Boolean) then the type is
changed and the value of the variant is set to the default for that type.
If the requested type is any other type the type of the schema variant is changed but
the value is not. In this situation you should not read from the schema variant as the
value will likely NOT be what you want.

You can also coerce a schema variant yourself with SchemaVariantCoerce

http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetSchema
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetSchema
http://docs.qbik.com/display/WINGATESDK/SchemaVariantSetBool
http://docs.qbik.com/display/WINGATESDK/SchemaVariantCoerce

	Schema Variant

